Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 127(Pt 7): 1511-22, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24496448

RESUMO

Epithelial-to-mesenchymal transition (EMT) is typically accompanied by downregulation of epithelial (E-) cadherin, and is often additionally accompanied by upregulation of a mesenchymal or neuronal (N-) cadherin. Snail represses transcription of the E-cadherin gene both during normal development and during tumour spreading. The formation of the mesodermal germ layer in Drosophila, considered a paradigm of a developmental EMT, is associated with Snail-mediated repression of E-cadherin and the upregulation of N-cadherin. By using genetic manipulation to remove or overexpress the cadherins, we show here that the complementarity of cadherin expression is not necessary for the segregation or the dispersal of the mesodermal germ layer in Drosophila. However, we discover different effects of E- and N-cadherin on the differentiation of subsets of mesodermal derivatives, which depend on Wingless signalling from the ectoderm, indicating differing abilities of E- and N-cadherin to bind to and sequester the common junctional and signalling effector ß-catenin. These results suggest that the downregulation of E-cadherin in the mesoderm might be required to facilitate optimal levels of Wingless signalling.


Assuntos
Caderinas/biossíntese , Proteínas de Drosophila/biossíntese , Drosophila/metabolismo , Animais , Adesão Celular/fisiologia , Diferenciação Celular/fisiologia , Drosophila/genética , Transição Epitelial-Mesenquimal/fisiologia , Mesoderma/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
2.
J Cell Sci ; 126(Pt 1): 360-72, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22992459

RESUMO

The formation of the larval body wall musculature of Drosophila depends on the asymmetric fusion of two myoblast types, founder cells (FCs) and fusion-competent myoblasts (FCMs). Recent studies have established an essential function of Arp2/3-based actin polymerization during myoblast fusion, formation of a dense actin focus at the site of fusion in FCMs, and a thin sheath of actin in FCs and/or growing muscles. The formation of these actin structures depends on recognition and adhesion of myoblasts that is mediated by cell surface receptors of the immunoglobulin superfamily. However, the connection of the cell surface receptors with Arp2/3-based actin polymerization is poorly understood. To date only the SH2-SH3 adaptor protein Crk has been suggested to link cell adhesion with Arp2/3-based actin polymerization in FCMs. Here, we propose that the SH2-SH3 adaptor protein Dock, like Crk, links cell adhesion with actin polymerization. We show that Dock is expressed in FCs and FCMs and colocalizes with the cell adhesion proteins Sns and Duf at cell-cell contact points. Biochemical data in this study indicate that different domains of Dock are involved in binding the cell adhesion molecules Duf, Rst, Sns and Hbs. We emphasize the importance of these interactions by quantifying the enhanced myoblast fusion defects in duf dock, sns dock and hbs dock double mutants. Additionally, we show that Dock interacts biochemically and genetically with Drosophila Scar, Vrp1 and WASp. Based on these data, we propose that Dock links cell adhesion in FCs and FCMs with either Scar- or Vrp1-WASp-dependent Arp2/3 activation.


Assuntos
Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas dos Microfilamentos/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Drosophila , Proteínas de Drosophila/genética , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/genética , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/genética , Proteína da Síndrome de Wiskott-Aldrich/genética
3.
J Cell Sci ; 121(Pt 8): 1303-13, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18388318

RESUMO

Myoblast fusion takes place in two steps in mammals and in Drosophila. First, founder cells (FCs) and fusion-competent myoblasts (FCMs) fuse to form a trinucleated precursor, which then recruits further FCMs. This process depends on the formation of the fusion-restricted myogenic-adhesive structure (FuRMAS), which contains filamentous actin (F-actin) plugs at the sites of cell contact. Fusion relies on the HEM2 (NAP1) homolog Kette, as well as Blow and WASP, a member of the Wiskott-Aldrich-syndrome protein family. Here, we show the identification and characterization of schwächling--a new Arp3-null allele. Ultrastructural analyses demonstrate that Arp3 schwächling mutants can form a fusion pore, but fail to integrate the fusing FCM. Double-mutant experiments revealed that fusion is blocked completely in Arp3 and wasp double mutants, suggesting the involvement of a further F-actin regulator. Indeed, double-mutant analyses with scar/WAVE and with the WASP-interacting partner vrp1 (sltr, wip)/WIP show that the F-actin regulator scar also controls F-actin formation during myoblast fusion. Furthermore, the synergistic phenotype observed in Arp3 wasp and in scar vrp1 double mutants suggests that WASP and SCAR have distinct roles in controlling F-actin formation. From these findings we derived a new model for actin regulation during myoblast fusion.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/fisiologia , Proteínas de Drosophila/fisiologia , Proteínas dos Microfilamentos/fisiologia , Proteína da Síndrome de Wiskott-Aldrich/fisiologia , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Animais , Sequência de Bases , Primers do DNA , Drosophila , Proteínas de Drosophila/genética , Proteínas dos Microfilamentos/genética , Microscopia Eletrônica , Reação em Cadeia da Polimerase , Proteína da Síndrome de Wiskott-Aldrich/genética
4.
Dev Biol ; 304(2): 664-74, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17306790

RESUMO

In higher organisms, mononucleated myoblasts fuse to form multinucleated myotubes. During this process, myoblasts undergo specific changes in cell morphology and cytoarchitecture. Previously, we have shown that the actin regulator Kette (Hem-2/Nap-1) is essential for myoblast fusion. In this study, we describe the role of the evolutionary conserved Wiskott-Aldrich syndrome protein that serves as a regulator for the Arp2/3 complex for myoblast fusion. By screening an EMS mutagenesis collection, we discovered a new wasp allele that does not complete fusion during myogenesis. Interestingly, this new wasp3D3-035 allele is characterized by a disruption of fusion after precursor formation. The molecular lesion in this wasp allele leads to a stop codon preventing translation of the CA domain. Usually, the WASP protein exerts its function through the Arp2/3-interacting CA domain. Accordingly, a waspDeltaCA that is expressed in a wild-type background acts as dominant-negative during the fusion process. Furthermore, we show that the myoblast fusion phenotype of kette mutant embryos can be suppressed by reducing the gene dose of wasp3D3-035. Thus, Kette antagonizes WASP function during myoblast fusion.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas dos Microfilamentos/metabolismo , Mioblastos/fisiologia , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Alelos , Animais , Fusão Celular , Drosophila/embriologia , Proteínas de Drosophila/genética , Proteínas dos Microfilamentos/genética , Mutação , Proteína da Síndrome de Wiskott-Aldrich/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...